[B12] パルスプラズマ CVD 法によるマイクロピペットへの DLC コーティング

知能機械工学科 山田研究室 0214036 芝原 奈々恵

1 緒言

溶液を噴射させるための針型微細管は、化学分析機器、 医療機器、印刷機器などにおける重要なデバイスとなって おり、益々その微細化が求められている。本研究では、近 年発達してきた薄膜作製技術、微細加工技術を用いて、先 端径1µmのガラスマイクロピペット上に、高硬度および 絶縁材料として知られる Diamond-like Carbon (DLC) [1]の 薄膜コーティング技術を開発した。

DLC コーティングしたマイクロピペットは、生体用の 微小電極や、細胞の温度測定のための微小熱電対[2]など に応用出来ると考えている。成膜後の DLC 膜の抵抗測定 より、絶縁膜として十分機能することが示されている[3]。 一方、本研究では質量分析法の1つである Electrospray ionization (ESI)法で使用される試料溶液噴射用のエミッタ -[4]に着目した。

ESI 法は、液体クロマトグラフィーと質量分析計をつな ぐインターフェイスの1つである。ESI法において、エミ ッターの内径が小さければ、先端から噴出される分析試料 は少なくて済む。分析試料が少なければ試料の濃度を上げ ることができ、感度が高まるため、微量な有機分子でも分 析が可能となる意義がある。エミッターは、ガラス製では 強度と耐久性に問題があり、一方金属製では強度と耐久性 には優れるが、加工の点で作製できる内径に限界があり、 現在市販されている最小の金属製エミッターは内径 30 μ m程度である。

本研究ではマイクロピペットへの DLC コーティング技 術を開発し、ESIエミッターの実現を目指している。すな わち、数µmの微小内径を有するガラスエミッターを強化 する役割が DLC 膜に期待される。ここでは、開発した成 膜技術、および作製したエミッターに対する強度測定と高 電圧負荷試験について述べる。

2 微小エミッターの作製

2.1 作製手順

本研究で提案するエミッターの基材には、先端径が1 μ mのガラスマイクロピペットが用いられた。この表面全体 に、金属薄膜、DLC 膜を順に成膜する(図 1)。金属薄膜は ESI エミッターとして使用する際の電極となると同時に、 DLC 薄膜を作製する際の電極となる。以下に作製手順を 述べる。

金属薄膜をスパッタリング法によって50nm 堆積させ る。DLC との密着性により、ニッケルを採用した。

DLC 薄膜を 50nm 堆積させる。製膜方法は次節で述べ る。

先端部を集束イオンビーム (FIB) により切断し、金 属薄膜を先端部で露出させると共に、先端形状を整え る。

2.2 プラズマ CVD による DLC 製膜

本研究では、図2に示す内部電極・容量結合型の高周波 (RF) プラズマ CVD (Chemical Vapor Deposition) 装置を 用いた2通りの製膜方法でDLCコーティングを行った。 ()2 極型成膜装置

図 2 (i)に示す 40mm のメッシュステンレス製の円筒 をアノード電極に、金属コートしたエミッターをカソード 電極にした。先端部での剥離や変形を避けるために、短時 間の放電を断続的に行い、製膜を行った。安定な製膜が可 能であるが、構造上一回の実験で一本のエミッターしか製 膜できないこと、先端への電荷集中が起こりやすく剥離変 形しやすいことが難点である。

()3 極型パルス成膜装置

図2()に示す平行平板電極間に形成されるプラズマ 内にエミッターを挿入し、製膜を行う。エミッターの配置 により1回の実験で複数本のエミッターを製膜するため に、図3に示すエミッター支持具を作製した。これにより、 一回の製膜で10本のエミッターの同時製膜が可能とな った。エミッターには自己バイアス効果を促進するためパ ルスバイアス電圧(-800 V, 10 µs, 100 Hz)を印加しながら 製膜を行った。エミッターに電荷が集中しないため剥離や 変形は少ないが、パルスバイアス電圧が不足すると、水素

図1 微小エミッターの作製手順

図3 エミッター支持具(4本同時製膜の様子)

を多く含有した重合膜が支配的になると考えられる。

3 作製したエミッターの強度評価

3.1 耐内圧性能試験

図4に示す装置で耐内圧性能を測定した。窒素ガスボン ベ、圧力計、および流量計を、先端を水に浸漬させたエミ ッターに繋げ、徐々に圧力を上昇させた。エミッター先端 から出る気泡の変化と圧力変化から、DLC コーティング 前後のエミッターの先端破壊圧力の決定を試みた。

ボンベレギュレータの最高圧力(1 MPa)を 1h エミッター に負荷し続けたが、DLC コーティング前後ともエミッタ ー先端は破壊されず、圧力を定めることはできなかった。 今後は、負荷圧力を高くする、具体的にはボンベレギュレ ーターを 1 MPa 以上のものにすることなどが課題と考え ている。

3.2 高電圧負荷試験

ESI 法への応用に向けて、DLC コーティング前後のエミ ッターに対して高電圧負荷試験を行った。実際の ESI 法で は 3~5kV の電圧が 5~20 min 程度エミッター先端に負荷 されるため、本実験でも同様の電圧をエミッターの下地金 属(Ni)に高電圧を負荷し、前後の様子を顕微鏡で観察した。

-3 kV の電圧で金属コーティングのみのエミッターは 先端が剥離したが、DLC コーティングしたエミッターに は変化はみられなかった。DLC コーティングしたエミッ ターは-4 kV の電圧負荷で先端が剥離した(図 5)。これによ り、DLC コーティングしたエミッターの方がより高電圧 負荷に耐えられるということがわかった。今後は、パルス 電圧や成膜条件などを変えて作製されたエミッターの試

図4 耐内圧測定装置

(1)高電圧負荷前 (2) -4kV, 10min 負荷後 図5 エミッター先端部写真(DLC コーティング後)

験を行っていき、更に高い電圧を負荷できるかを調べてい きたい。

4 結言

マイクロピペットへのDLCコーティング技術を開発し、 ESIエミッターの作製を行った。DLCコーティングにはプ ラズマ CVD 装置を用い、2通りの電極構造を開発した。 平行平板電極を用いたパルスプラズマ CVD 法では2極型 装置で課題とされていた先端への電荷集中による剥離変 形・低生産性を改善することができた。

ESI 法への応用に向けたエミッターの耐内圧性能試験 を行ったが有用なデータは得られなかった。また、高電圧 の負荷により、先端部の剥離は観察されたが、およそ-3 kV までは影響がないことが分かった。今後の課題としては、 負荷圧力を高くすることと、高電圧負荷に耐えられるよう な高硬度な DLC 膜を作製することである。

参考文献

- 田中章浩, 最近のダイヤモンドライクカーボン(DLC)膜の機 械的特性, J. Vac. Soc. Jpn, 47, 12 (2004)
- [2] 角田直人他、細胞熱計測のための微小熱電対プローブの開発, バイオエンジニアリング講演会(2003)
- [3] 渡邉まゆ、マイクロピペットへの DLC コーティング技術の開発、平成 15 年度卒業論文
- [4] Takashi Nohmi and John B Fenn, Electrospray Mass Spectrometry of Poly (ethylene glycols) with Molecular Weights up to Five Million, J. Am. Chem. Soc, 114, 3241-3246 (1992)
- [5] 麻蒔立男, 薄膜作製の基礎第3版, 日刊工業新聞社 (1996)